Big O Notation Graph
Yeh graph Big O Notation ka comparison dikhata hai, jo hume yeh samjhata hai ki algorithms ka performance kaise change hota hai jab input size nn badhta hai. 💻📈
1. O(1) - Constant Time (Light Blue Line)
- Mast wali line! 💙
- Iska matlab hai: Input size nn kitna bhi ho, operations ka time same rahega. 😎
Example: Ek box se ek item nikalna, koi farak nahi padta kitne items hain. 🎁
👉 Super fast & efficient!
2. O(log n) - Logarithmic Time (Cyan Curve)
- Slow growth wali line! 🔵
- Jab input nn badhta hai, operations bahut dheere-dheere badhte hain.
Example: Tum kisi dictionary mein ek word dhoondh rahe ho, aur beech-beech ke pages chhodte ja rahe ho. 📖
👉 Efficient hai, bade inputs ke liye bhi manageable.
3. O(n) - Linear Time (Purple Line)
- Seedhi simple line! 💜
- Agar n double hota hai, toh kaam bhi double hoga.
Example: Tum ek list ke sare items ek-ek karke dekh rahe ho. 🗒️
👉 Decent, par bade inputs ke liye slow ho sakti hai.
4. O(n²) - Quadratic Time (Yellow Line)
- Danger wali line! 🟡⚠️
- Jab n badhta hai, operations bohot fast grow karte hain. 😨
Example: Tum ek list ke har item ko baaki sab items ke saath compare kar rahe ho (nested loops).
👉 Okay for chhoti problems, but bade nn pe problem ho sakti hai!
5. O(2ⁿ) - Exponential Time (Red Line)
- Red Alert! 🚨
- Ye line rocket ki tarah upar ja rahi hai! 🚀
- Jab n thoda sa badhta hai, operations ki count duniya se bahar nikal jati hai. 😵
Example: Tum ek problem ke har possible solution ko check kar rahe ho.
👉 Avoid karna chahiye bade inputs ke liye, warna computer sad ho jayega. 🖥️💔
Graph ka Moral of the Story:
- Light blue aur cyan wali lines (O(1), O(log n)) sabse efficient hain. 👍
- Purple line (O(n)) thik hai, manageable hai. 😌
- Yellow aur red lines (O(n²), O(2ⁿ)) se door raho agar input bada ho! 🚫
Kehne ka matlab: Smart algorithms chuno jo time aur memory bachayein! 🧠✨

Comments
Post a Comment