Big O(log n) Notation ๐Ÿง๐Ÿ“‰

Big O(log n) ka matlab hai ki input size jitna badhta hai, kaam ka time utna dheere dheere badhta hai. Matlab agar tumhare paas bohot zyada data ho, tab bhi tumhara algorithm kaam jaldi karega. ๐Ÿ’จ


Simple Example ๐Ÿ“š

Socho tumhare paas ek sorted list hai, jisme tumhe kisi specific item ko dhoondhna hai. Tum ek magic trick use karte ho:

  1. Pehle pura list ko do parts mein divide karte ho.
  2. Phir tum check karte ho ki tumhara item kis part mein ho sakta hai (left ya right).
  3. Fir se jo half ka part mila, usko do parts mein divide karte ho. Yeh step baar-baar repeat karte ho.
  4. Is tarah se tum jaldi se apne item tak pohanch jaoge.

Example: Guess the Number Game ๐ŸŽฎ

Socho tumhe ek number guess karna hai, jo 1 se 1000 ke beech ho. Tumhare paas ek hint system hai jo tumhe batata hai:

  • "Higher" ya “Lower”.

Agar tum 1000 numbers mein se kisi ko guess kar rahe ho, toh tum pehli baar 500 number ke aas-paas guess karoge. Agar number 500 se kam hai, toh ab tum sirf 500 se kam numbers mein search karoge, aur agar zyada hai, toh tum 500 se zyada numbers mein search karoge.

Tum har baar half half karke numbers ko reduce karte jaoge. Agar number 1000 hai, toh 10 steps mein guess kar paoge. ๐Ÿ˜ฒ


Example in Code ๐Ÿ’ป

function binarySearch(array, target) {
    let start = 0;
    let end = array.length - 1;

    while (start <= end) {
        let mid = Math.floor((start + end) / 2);  // Mid point
        if (array[mid] === target) {
            return mid;  // Found the target
        } else if (array[mid] < target) {
            start = mid + 1;  // Search the right part
        } else {
            end = mid - 1;  // Search the left part
        }
    }
    return -1;  // Not found
}

Yahaan binary search use ho raha hai, jisme list ko half-half divide karke tum apna target dhoondh rahe ho. Agar list mein 16 elements hain, toh tumhe maximum 4 steps lagenge, chahe 1000 elements hon.


Real-Life Example ๐Ÿก

  1. Phonebook Search ๐Ÿ“–
    Agar tumhe kisi ka naam phonebook mein dhoondhna hai, aur phonebook sorted hai, toh tum middle page se start karte ho. Agar tumhara naam wahan nahi hai, toh tum decide karte ho ki tumhara naam left side mein ho sakta hai ya right side mein. Har baar tum half cheezein dekhte ho, isliye tum jaldi se find kar paate ho.

  2. Library Mein Book Dhoondhna ๐Ÿ“š
    Socho tumhare paas ek sorted library hai. Tum directly middle book se start karte ho aur agar tumhari book left side mein hai, toh tum left side ki books dekhna start karoge. Agar right side mein hai, toh right side ki books. Ye process bhi log n (logarithmic) time mein hota hai.


Key Points to Samjho:

  • Big O(log n) ka matlab hai tumhare data ka size bada ho, toh bhi kaam ka time slowly badhega.
  • Kab hota hai? Jab tum half-half karke data ko search kar rahe ho, jaise Binary Search.
  • Efficient hai? Haan! Yeh bohot fast hota hai, especially jab tumhare paas bohot zyada data ho.

Moral of the storyHalf karna zyada efficient hai! Tumhara time bohot dheere dheere badhega. ๐Ÿš€

Comments

Popular posts from this blog

Array ko Big O Notation๐Ÿš€

JavaScript arrays

Big O Notation Graph