What is Big O(2^n) Exponential

 Big O(2^n) ko samajhne ke liye socho ki tumhare paas ek aisi problem hai jo exponentially grow karti hai, jaise ek pedh ki branches. 🌳


Samajhne ka Easy Tareeka:

  1. Kya hota hai O(2^n)?

    • Jab tumhari problem ki size nn 1 step badhta hai, toh tumhari calculations double ho jaati hain. 😲
    • Matlab agar n=1n = 1, toh 2 calculations,
      n=2n = 2, toh 4 calculations,
      n=3n = 3, toh 8 calculations,
      aur n=10n = 10, toh 1024 calculations! 😡‍πŸ’«

    Yeh exponential growth ka example hai.


  1. Example se samjho:
    • Socho tumhare paas ek binary tree hai, jisme har node ke 2 child nodes hain. Agar tumhare nn levels hain, toh total nodes honge 2n−12^n - 1. 🌲

      Level 0: 1 node
      Level 1: 2 nodes
      Level 2: 4 nodes
      Level 3: 8 nodes
      
      

      Tum dekh rahe ho na, har level pe nodes double ho jaati hain?


  1. Drawback:
    • Bahut slow ho jata hai agar nn bada ho jaaye. For example, agar n=50n = 50, toh 2502^{50} itna bada number hai ki tumhare computer ka dimaag ghoom jayega. πŸ–₯️πŸ’€

  1. Real-Life Example:
    • Chessboard problem! 🏰
      Ek aadmi bola, mujhe 1st square pe 1 rice grain do, 2nd pe double kar do, 3rd pe double kar do… Aur total 64 squares bhar do. πŸ—️
      • Tumhe lagta hoga simple hai, but last square tak rice grains 18,446,744,073,709,551,615 ho jaayenge! 😱

Moral of the Story:

Big O(2^n) ka matlab hai tumhari problem bohot fast grow karti hai, aur solve karna practically impossible ho sakta hai agar nn bada ho jaye. 😰

🎯 Tip: Exponential algorithms se bachne ki koshish karo, aur optimize karne ka tareeka dhoondo! πŸš€

Comments

Popular posts from this blog

Array ko Big O NotationπŸš€

JavaScript arrays

Big O Notation Graph